Batch and Moving Horizon Estimation for Systems subjected to Non-additive Stochastic Disturbances
نویسندگان
چکیده
منابع مشابه
Moving horizon estimation for hybrid systems
We propose a state smoothing algorithm for hybrid systems based on Moving Horizon Estimation (MHE) by exploiting the equivalence between hybrid systems modeled in the Mixed Logic Dynamical form and piecewise affine systems. We provide sufficient conditions on the time horizon and the penalties on the state at the beginning of the estimation horizon to guarantee asymptotic convergence of the MHE...
متن کاملchannel estimation for mimo-ofdm systems
تخمین دقیق مشخصات کانال در سیستم های مخابراتی یک امر مهم محسوب می گردد. این امر به ویژه در کانال های بیسیم با خاصیت فرکانس گزینی و زمان گزینی شدید، چالش بزرگی است. مقالات متعدد پر از روش های مبتکرانه ای برای طراحی و آنالیز الگوریتم های تخمین کانال است که بیشتر آنها از روش های خاصی استفاده می کنند که یا دارای عملکرد خوب با پیچیدگی محاسباتی بالا هستند و یا با عملکرد نه چندان خوب پیچیدگی پایینی...
Stochastic MPC for Systems with both Multiplicative and Additive Disturbances ?
A stochastic MPC strategy is proposed to handle systems with both multiplicative and additive random uncertainty. Through a dual mode strategy, the system can be divided into a nominal dynamics and an error dynamics. The errors are further decomposed into two parts: one for which it is possible to construct probabilistic tubes offline with the explicit use of the disturbance distribution inform...
متن کاملOptimal estimation for linear singular systems using moving horizon estimation
In this paper, the moving horizon recursive state estimator for linear singular systems is derived from the minimum variance estimation problem. The proposed estimate of the state using the measured outputs samples on the recent finite time horizon is unbiased and independent of any a priori information of the state on the horizon. The convergence and stability of the filter are evoked. A numer...
متن کاملMoving horizon least-squares input estimation for linear discrete-time stochastic systems ?
This paper presents a novel moving horizon least-squares input estimation method for linear discrete-time stochastic systems. For systems with completely unknown initial state and no unstable zeros, some existing work showed that asymptotic input reconstruction is possible in the absence of noises. However, under the same condition but with stochastic noises, most existing input estimators, whi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IFAC-PapersOnLine
سال: 2019
ISSN: 2405-8963
DOI: 10.1016/j.ifacol.2019.06.031